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The development of perpetually powered sensor networks for environment monitoring to avoid periodic battery replacement
and to ensure the network never goes offline due to power is one of the primary goals in sensor network design. In many
environment-monitoring applications, the sensor network is internet-connected, making the energy budget high because data
must be transmitted regularly to a server through an uplink device. Determining the optimal solar panel size that will deliver
sufficient energy to the sensor network in a given period is therefore of primary importance. The traditional technique of sizing
solar photovoltaic (PV) panels is based on balancing the solar panel power rating and expected hours of radiation in a given area
with the load wattage and hours of use. However, factors like the azimuth and tilt angles of alignment, operating temperature, dust
accumulation, intermittent sunshine and seasonal effects influencing the duration of maximum radiation in a day all reduce the
expected power output and cause this technique to greatly underestimate the required solar panel size.Themajority of these factors
are outside the scope of human control and must be therefore be budgeted for using an error factor. Determining of the magnitude
of the error factor to use is crucial to prevent not only undersizing the panel, but also to prevent oversizing which will increase the
cost of operationalizing the sensor network. But modeling error factors when there are many parameters to consider is not trivial.
Equally importantly, the concept of microclimate may cause any two nodes of similar specifications to have very different power
performance when located in the same climatological zone. There is then a need to change the solar panel sizing philosophy for
these systems. This paper proposed the use of actual observed solar radiation and battery state of charge data in a realistic WSN-
based automatic weather station in an outdoor uncontrolled environment. We then develop two mathematical models that can be
used to determine the required minimum solar PV wattage that will ensure that the battery stays above a given threshold given
the weather patterns of the area. The predicted and observed battery state of charge values have correlations of 0.844 and 0.935
and exhibit Root Mean Square Errors of 9.2% and 1.7% for the discrete calculus model and the transfer function estimation (TFE)
model respectively. The results show that the models perform very well in state of charge prediction and subsequent determination
of ideal solar panel rating for sensor networks used in environment monitoring applications.

1. Introduction

Environment monitoring systems are devices with electronic
sensors and sensor networks that are deployed outdoors to
quantify weather elements and are typically powered using
solar energy. The traditional sizing technique for solar PV
panels (solar panels) is a computation involving the hours
of sunshine per day, the wattage of the loads, and the power

output of the solar panel. The solar panel size is determined
from

𝑃𝑆 =
𝑃𝐿
𝑁𝑡

(1)

where 𝑃𝐿 is the wattage for the load that draws power for t
hours and N is the expected number of sunshine hours per
day, which varies by season. This power generated by a solar
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panel depends on the geographical location of the installation
site, season of the year, time of the day, and the current
local weather conditions. As such, the power output from the
panel at any given time can be quite varied. Any calculation,
hence, that is based on a blanket number representing total
sunshine hours in order to calculate the energy produced
from the panel, will be inherently flawed if these factors are
not quantified to make the necessary adjustments.

The panel size estimated from this equation can be
improved using analytical techniques. Analytical techniques
are largely used to estimate the amount of energy harvested
by the solar panel using statistical weathermodels, such as the
approach used in [1].These are then coupledwith engineering
models of the components inside. Analytical techniques are
meant to obtain an error factor to account for the short term
weather variations that affect the power output and other
system-specific variations such as

(i) temperature effects: higher temperatures have been
long known to reduce the solar panel efficiency [2, 3]
and the charge and discharge rate for many battery
technologies [4–6];

(ii) component efficiency: electronics like charge con-
trollers, DC-DC converters, and regulators consume
varying power from depending on the level of input
voltages from the solar panel and operating currents.

Using analytical techniques is effective in modelling indi-
vidual components in a system but modelling the system as
a whole is often a challenging task. One challenge is that
they often model the load and its power electronics in an
unsophisticated way that excludes the detail in the system
behavior which, in the case of environment monitoring sen-
sor networks, may be caused by changes of data acquisition
intervals, network connection, transmission times, etc. that
deeply influence the energy demand of the system. As such,
designers are changing the sizing philosophy to use actual
recorded and highly localized solar radiation data to size
solar systems for given locations [7, 8]. Apart from [9], all
the related work we have seen is similar to the latter and
deals with sizing solar systems for large scale generation for
domestic usage and grid supply. We have not found any
work dealing with sizing energy harvesting units of any type
for very low power DC systems such as those in wireless
sensor networks. The work in [9] though is a simulation and
inherently does not involve all the complex interactions of the
factors that have been stated.

For such loads, a more reliable technique would have to
be evidence-based–where measurements of the actual solar
insolation and the actual accumulated energy of the battery
caused by the insolation under a given load in a real deploy-
ment are used to establish any input-output relationships.
These measurements can act as input and output data that
can be used to model the whole gateway device as a black box
using a variety of techniques. The model can then be used
with historic weather data for a given area to predict future
battery state of charge (SoC) and the solar panel size that will
be required to minimize the likelihood of the battery being
drained below this SoC.
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Figure 1: Battery SoC in a 55mW WSN gateway with a 1W solar
panel.

Section 2 discusses the preliminary experimentation that
gave the motivation for this work. It also discusses the
experimental setup that was used to collect the data to be
analyzed. Section 3 discusses the system identification and
modelling techniques being proposed. It also discusses the
results and prediction accuracies for both models. We then
use the more robust model to show how future battery SoC
can be generated using a reference solar insolation profile.
Section 4 concludes and gives recommendations for further
work.

2. Materials and Methods

2.1. Preliminary Experimentation. The motivation for this
research comes from the preliminary observations of the
battery SoC and voltage profiles of two WSN gateways. The
first deploymentwas a lowpowerWSNgateway, designed and
implemented following the guidelines in [10]. The gateway
uses the RS mote [11] as a sink node and the Electron 3G
[12] as the uplink device. The system consumes about 55mW
(15 mA at 3.7 V). The second gateway is an embedded
Linux gateway based on the Raspberry Pi [13] and using the
same mote as a sink node. The system power consumption
was about 1250 mW (250 mA at 5.0 V) which evaluates to
approximately 30000 mWh per day. The two gateways are
installed at 0.3292∘N, 32.5710∘E

Using (1) and considering a daily solar cycle, the first
system requires 1320 mWh per day. This experiment lasted
13 days in late February 2018. The average peak sunshine
hours during this time were 5.65, calculated using the NASA
Daily Agroclimatology solar insolation dataset [14] for these
coordinates. With these hours of peak sunshine, the ideal
panel size is calculated as 233 mW from (1). The second
gateway was deployed for 6 days in November 2017, in which
the number of peak sunshine hours was 5.20. The ideal panel
size for this setup is 5.764 W from (1).

Figure 1 shows the battery SoC profile for a 2000 mAh
Li-ion battery powering the first system in which a 1W solar
panel was used as the energy harvesting unit. This panel
size is over 4 times the calculated value of 220mW. Figure 2
shows the voltage of the Lead Acid battery that was used to
power the second system. Here, we used a 30W solar panel as
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Figure 2: Battery voltage in a 1250mW WSN gateway with a 30W
solar panel.

the energy harvesting unit, over 5 times the required panel
size. This experiment lasted 6 days in November 2017. The
expected charge profile in both cases should indicate periods
of discharge at night followed by full charge during the day to
100% and 14V, respectively. However, the trend of the profile
indicates that the energy accumulated during the charging
time was not sufficient to meet the load demand even with
panels sized with factor of ×4 and ×5, respectively. The peaks
in the charging profile reveal that the batteries did, in fact,
accumulate charge, but it was not sufficient to sustain the
operation of the WSN gateways. These experiments were
carried out in the second half of February and November.
The rainfall season in Uganda is biannual and the seasons
in March to May (MAM) and September to November
(SON) are characterized by limited intermittent sunshine,
more rainfall, and cloudy days [15, 16]. We believe that the
short term variations in solar insolation at a given location,
especially in rainy seasons, account greatly for the observed
results and that proper solar panel sizing must involve some
modelling of the relationship between the actual observed
solar radiation and the subsequent change in battery SoC it
imparts.

2.2. Experiment Setup. The experiment setup consists of a
modified implementation of the low power gateway already
discussed in Section 2.1. The device consists of a sink node,
an SD card for local storage, an uplink device, a 2000mAh
LP103450 Li-ion battery, a TP4056 battery protection mod-
ule, and a 2W solar panel with dimensions 110 × 136 mm.
Figure 3 shows the physical implementation. The uplink col-
lects battery state of charge information approximately every
3 minutes. The solar radiation data is measured by the SP-
Lite SiliconPyranometer, part of an industry-grade automatic
weather station from ADCON telemetry [17] managed by
the Uganda National Meteorological Authority. We collected
over 16500 evenly distributed samples for the battery SoC
over a period of 45 days.The solar radiation datawas recorded
every 15 minutes. The 15-minute interval for recording solar
radiation is a fixed setting that could not be changed in this
experiment. Transmitting to the gateway are about 5 sensor

nodes sending weather data reports such as temperature,
humidity, wind speed and direction, atmospheric pressure,
soil moisture, and soil temperature.The gateway uploads data
after receiving 700 reports. Each report is approximately 150
bytes long.

3. System Identification and Modelling

3.1. �eory. System identification refers to the process of
generating a mathematical model of a system’s nature by
observing the input and output signals it generates in a known
period of time. The behavior of standard systems, like a mass
on a spring, can be modelled using mathematical techniques
without the need to perform an actual experiment, if various
variables like the mass, spring length, elasticity, etc. are
known. In many other cases, however, the behavior of a
system cannot be modelled mathematically either because
its internal components are unknown or because their
interactions are too complex to analyze effectively. In these
cases, the system can be regarded as a black box, and only
these observed inputs and outputs are used to estimate its
behavior. The methodology of system identification follows
the following steps:

(i) Identify the input into and output from the system.

(ii) Sample the inputs and outputs at known periods of
time.

(iii) Split the observed data into two (or more) datasets.
These datasets are used separately for building the
model and for validating it.

(iv) Visualize the input and output datasets simultane-
ously.This step is important because it gives the ability
to make an initial classification as to whether the
system is linear or nonlinear.

(v) Generate a mathematical function that produces
outputs from observed inputs, while minimizing the
error between these outputs and actual observed out-
puts. This is an iterative step and is usually achieved
by a computer program.

(vi) Apply this function to the validation dataset and
observe differences between actual and observed
outputs. These differences are the prediction errors.

(vii) Repeat (iv) and (v) until prediction errors are accept-
able in the experiment context.

Systems may be purely linear, purely nonlinear, or linear
with varying extents of nonlinear distortion. Classification is
thus an important part of this process because it will enable
the designer to decide whether established techniques of
modelling may be sufficient or if a new technique is needed.

3.2. Classification of theWSNGateway. The ideal size of solar
panel needed to sustain the gateway operation will be one
which, given a particular insolation profile, can guarantee
a minimum battery SoC for the system in a desired time
range. The solar insolation modulates the electrical power
from the solar panel. This power is both consumed by the
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battery

uplink
Power lines from solar
panel (not shown)

sink node

Figure 3: Physical implementation of an environment monitoring WSN gateway showing the sink node, uplink, and power system
components.
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Figure 4: (a) Variation of solar radiation and power output from photovoltaic cell during the day. (b) Scatter plot showing linearity of this
variation.

gateway device and accumulated into the battery in varying
proportions which determine the state of charge at any given
time. As such, the battery SoC is the response variable and
can be looked at as the output.

While the actual cause of change in the battery SoC is the
electrical power output from the photovoltaic panel, it has
been shown already in [18, 19] that, in general, photovoltaic
electrical power output varies linearly with the incident
solar radiation. Figure 4, adapted from [18], illustrates this
relationship for a particular photovoltaic cell. The correlation
between the two is very strong and, as such, solar insolation
can be regarded as the input signal. Figure 5 further shows
how the battery SoC responds to the incident solar radiation
profile over four selected days in June 2018.

The power consumption of the system is roughly con-
stant; it is in a low power state consuming approximately
15 mA for about 60 minutes and small regular bursts of
280-400 mA for about 40 seconds during data transmission
to the server. It therefore has constant power consumption
approximately 99% of the time. From this information, we
expect the relationship between solar insolation and battery
state of charge to be approximately linear and time invariant.
Figure 6 confirms our expectation. Here, we show the scatter

plots of the variation in Figure 5 for a single day, split into
the charging phase and discharging phase. The relationship
in Figure 6 shows a very strong positive linear correlation
between the solar insolation incident on the solar panel and
the corresponding battery SoC.

We conclude thus by classifying our system as being
Linear Time Invariant (LTI).

3.3. Modelling Techniques. In the techniques presented, we
used half the data, about 23 days, to estimate model the
system and the other half was used as validation data to test
the model. A 3-minute interval dataset was generated from
the solar radiation data by running a spline interpolation
which produces data points corresponding to the points at
which the SoC was measured while maintaining the exact
shape of the original profile.

3.3.1. Discrete-Calculus Technique

(i) �eory.The term discrete calculus is used to show that the
method concerns itself with the accumulation of the areas
under the solar radiation curve and the incremental change
this imparts on the battery SoC. Solar radiation data, in
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Figure 5: Variation of battery state of charge with solar insolation. Zero values of solar insolation indicate night time.
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Figure 6: Linearity relationship between incident solar radiation and battery state of charge (a) during charge and (b) during discharge.

𝑊𝑚−2, is easily converted to 𝑊 by multiplying by the area
of the PV panel. Figure 7 illustrates the theory behind this
technique.

Considering a small unit of time, �𝑡, it is possible to
evaluate the solar energy, in𝑊h, that arrives at the surface of
the panel. This energy is equivalent to the area of the shaded
trapezoid and is calculated to be

𝐸 = 12�𝑡 (𝑊1 +𝑊2) (2)

where 𝑊1 and 𝑊2 are the observed incident solar radiation
values at a time 𝑡 and 𝑡 +�𝑡, respectively.This energy 𝐸 yields

an equivalent electrical output energy 𝐸𝑒 = 𝜂𝐸 where 𝜂 is the
solar panel efficiency. If P is the power consumption of the
load, the electrical energy is equal to the energy consumed by
the load, P�𝑡, and the energy accumulated by the battery to
cause the change in the battery state of charge equal to �𝐶.
The change in battery state of charge is in 𝑊h and has the
same dimensions as energy. Hence,

𝐸𝑒 = 𝜂𝐸 = P�𝑡 + �𝐶 (3)

In a time-invariant system, one in which the power con-
sumption does not change, the term P�𝑡 is a constant. The
solar panel efficiency can be assumed to be also constant. In
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Figure 7: Illustration of the theoretical underpinning of the discrete calculus technique.

practice, this efficiency varies slightly with temperature of the
PV module. In [20, 21], it has been shown that the reduction
in overall output efficiency is only about 1-2% in the 25∘ –
60∘C temperature range.

Hence, it is observed that the change in battery SoC has
a linear relationship with the incident solar insolation as per
(4).

�𝐶 = 𝜂𝐸 − P�𝑡 (4)

It can be seen from (4), that when 𝐸 = 0, for example, during
nighttime, the change in battery state of charge is a reduction
equivalent to the energy consumed by the gateway device.

In an ideal time-invariant system, a plot of �𝐶 vs. 𝐸
should yield a straight line and thus a correlation of 1.

(ii) Results. Starting at a time 𝑡, the algorithm in the model
takes an arbitrary value of �𝑡 and calculates the areas of sub-
sequent trapezoidal strips in the dataset, which are equivalent
to 𝜂𝐸, and then determines the incremental change in the
battery SoC, �𝐶, by subtracting successive SoC values at the
various points 𝑡 + 𝑛�𝑡 where 𝑛 = 1, 2, 3 . . ..

Figure 8 shows a scatter plot of the observed values of
�𝐶 on the vertical axis and 𝜂𝐸 on the horizontal axis. The
measured linear correlation between the two is 0.605, which
is classified as amoderate positive correlation.The limitations
in Section 3.6 explain the factors that affect this correlation.
The algorithm then generates a linear equation of the line
of best fit between the two datasets. This linear equation is
used to generate the expected change in �𝐶 given a known
value of solar insolation. For prediction, starting with an
initial SoC value, the algorithm looks at the solar insolation
at a given time, generates �𝐶, and adds this change to the
previous value of SoC to generate the next value and the
iteration continues until the end of the dataset is reached.
This iteration generates the predicted SoC values. Figure 9
shows a plot of the observed SoC values, the predicted values,
and the optimized predictions after an error model has been
added to improve the data. The error model is a linear line
of best fit that is generated from the observed point-to-point
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Figure 8: Scatter plot of 𝜂𝐸 and �𝐶 showing a moderately strong
linear correlation of 0.605.

errors between the actual observed and predicted values. It is
obtained as follows.

Let the observed values of battery state of charge be {𝑂𝑖}
and the predicted values be {𝑃𝑖}. The point-to-point errors
will be

∈𝑖 = 𝑃𝑖 − 𝑂𝑖 (5)

These errors can be mapped against {𝑃𝑖} to establish a line
best fit that expresses the errors as a function of the predicted
value,

∈ = 𝑓 (𝑃) = 𝑚𝑃 + 𝑐 (6)

The function is then evaluated for all values in {𝑃𝑖} and
the optimized predicted values {𝑃𝑜𝑖 } are generated using the
equation

𝑃𝑜𝑖 = 𝑃𝑖 − 𝑓 (𝑃𝑖) (7)

This reduced the observed RMSE by up to 2.8% from 11.86 to
9.20.The correlation coefficient of 0.844 shows that themodel
is also quite strong in predicting the charge-discharge pattern
and places times the maxima and minima very well.
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Figure 10: Representation of gateway black box as a SISO control system with unknown transfer function, H(z).

3.3.2. Transfer Function Estimation

(i) �eory. In LTI systems, transfer functions are used to
generate outputs from known inputs. In many cases, transfer
functions can be derived mathematically. However, when
a system behavior is unknown but its input-output data is
available, the system’s transfer function can be estimated and
used for prediction of output given known inputs. Figure 10
shows how the gateway setup in Figure 3 can be interpreted
as a black box and modelled as a single-input single-output
(SISO) control system. The input 𝑥(𝑡) is the solar radiation
incident on the solar panel in Watts. The output 𝑦(𝑡) is the
observed battery state of charge. The model of the behavior
of the black box, ℎ(𝑡), is the system transfer function in the
time domain. Usually, system identification is carried out in
the frequency domain. For discrete time systems, the input,
output, and transfer functions are 𝑋(𝑧), 𝑌(𝑧), and 𝐻(𝑧) in
the frequency (Z-) domain, respectively.

The transfer function was estimated using the tfest func-
tion in MATLAB (version 2018a), with an arbitrary selection
of 3 poles and 2 zeros for stability. We then used the compare
function to generate the predicted output.

(ii) Results. Figure 11 shows the variation of the predicted
and the actual observed battery SoC values in the validation
period. There was a strong positive correlation of 0.934 and
an RMSE of 1.695.

3.4. Discussion. The correlation coefficient shown in Figures
8, 9, and 10 is the Pearson product-moment correlation
coefficient and is a measure of the strength of the linear
relationship between two variables. The correlation values of
0.844 and 0.935 indicate that the models are very accurate
in predicting the pattern of the state of charge profile.
They indicate that the models predicted the charging and
discharging times of the battery and placed the peaks and
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Figure 11: Predicted and actual values of battery state of charge over 24 days using the transfer function estimation technique.

valleys of the profile very well. This can also be visually
observed in Figures 9 and 11. A visual analysis reveals that the
models overestimated a few SoCmaxima andunderestimated
some minima but had accurate predictions on most of the
SoC range. The most important prediction error statistic is
the root-mean-square error (RMSE). The calculated RMSE
values of 9.2 and 1.70 are equivalent to 9.2% and 1.70%,
respectively, since the SoC varies from 0 to 100. This means
that, on average, for the TFE technique, for example, we can
expect only a 1.7% error margin in the predicted dataset. The
discrete calculusmodel shows aweaker performance than the
transfer function estimation (TFE) model with the difference
in RMSE being 7.5 units. This means that, on average, the
model will underestimate or overestimate the SoC by 7.5 units
compared to the TFE technique. However, there are some
primary advantages to this technique:

(i) It is very fast and will allow designers to run quick
simulations at lower accuracy. The tfest function is
an inbuilt MATLAB function with over 500 lines
of code and runs multiple iterations until a good
fit is obtained. It depends on several other inbuilt
functions. Because of this, the tfest code took an
average of 33.1 seconds to run to completion while
the discrete calculus model lasted only 5.1 seconds on
average on the same machine. This is advantageous
when designers plan to simulate and deploy very
many sensor nodes over a large expanse of land with
varying solar radiation profiles.

(ii) The discrete calculus model can be coded easily
in another language. The TFE technique relies on
complex preliminary algorithms to estimate initial
values of the transfer function coefficients such as
those in [22].

3.5. Solar Panel Size Simulations. During the development of
eithermodel, a standard Li-ion battery of known capacity and
solar panel of known wattage and dimensions are used. The
model is specific to this system. Two adjustments need to be
included in the simulation code for systems with different
battery capacities and different solar panel sizes.

1. For a model developed with a battery of capacity
𝐶1, to simulate with a new battery of capacity 𝐶2,
the observed successive changes in the output SoC,
�𝐶, need to be multiplied by 𝐶1/𝐶2. These new
differences are then, together with the initial SoC,
used to generate the new SoC profile.

2. To simulate and observe the output SoC for a different
panel size, the input solar insolation is multiplied
by the ratio of the new (required) panel size to the
one used in the development of the model. This is
an accurate approach because it has already been
proven in Section 3.2 that electrical power output
varies linearly with solar insolation. In our model, for
example, the panel size used is 110 × 136 mm and
its wattage is 2W. Its area is 149.6 𝑐𝑚2. This area is

multiplied by the solar radiation in 𝑊𝑚−2 to obtain
the solar insolation in W. To model the system with
a solar panel of 3 W, the panel area is multiplied by

1.5 to give 224.4 𝑐𝑚2. The solar insolation data to be
used is generated using the same solar radiation data
but multiplied with the new panel area.

Figure 12 shows one a backward prediction using the TFE
technique for the period Jan-June 2018 starting from an initial
SoC of 100% and with the solar panel size changed to 3W.We
notice two things. First, the SoC is predicted to reach values of
up to 130% correctly implying an abundance of energy from
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Figure 12: Back-predicted SoC values from Jan 2018.

the larger panel and secondly, there is a negative trend from
March to May, in line with the low solar insolation of the
season as stated in [15, 16]. The estimated transfer function
can be used to back-predict the SoC profile using historic
solar radiation data. Apossible application of back-prediction
is to analyze the performance of the system in seasons that
are well known to have poor sunshine. By obtaining averages
of historic data spanning back a few years, a representative
insolation profile can be generated and used as the input
into this model. The corresponding output is then used as
a reliable estimate for future state of charge values for a
given system. To ensure that the battery SoC never goes
below a given threshold, the designer iteratively increases or
decreases the panel size and runs the simulation again.

In conclusion, transfer function theory in control engi-
neering generates reliable results when extended to solar
panel sizing applications using measurements of solar radi-
ation and accumulated energy in the battery.

3.6. Limitations. Since this was an outdoor uncontrolled
experiment, we are aware of some limitations that could
have introduced some nonlinearities and time-variance and
affected the accuracy of our results. These limitations are
the reason why the observed correlation in Figure 8 is 0.605
instead of the expected 1.0.

Foremost, the official solar insolation data from the
National Meteorological Authority is measured every 15
minutes and yet the SoC is measured approximately every 3
minutes. Solar radiation is quite dynamic, especially in cloudy
days and may change many times during this interval. As
such, it is likely that the calculation in (2) underestimates or
overestimates some values in the dataset used to generate the
model.This affects the TFE technique as well.The solution to
this is to use high-resolution solar radiation values.

Secondly, the WSN is deployed with a cellular gateway.
The power consumed during transmission will vary depend-
ing on the cellular signal strength since the connection time
and time to upload data will increase. These factors were

outside the scope of our control and the errors introduced
cannot be modelled mathematically.

Thirdly, some reports from the sensor nodes may not
reach the gateway because of poor signal strength.This causes
the gateway to wait a bit longer in between some transmis-
sions and shorter in others. Hence, the power consumed will
vary slightly.

4. Conclusions

Autonomous gateways and sensor nodes in environment
monitoring wireless sensor networks can be modelled as lin-
ear systems. Using the solar insolation profile incident on the
solar photovoltaic panel as the input and the observed battery
state of charge as the output, the input-output relationship
can be effectively evaluated by using the suggested techniques
of transfer function estimation and discrete calculus. The
two techniques both give strong prediction accuracy and low
error magnitudes between observed and predicted values.
The discrete calculus technique can be used for fast rough
estimation and the transfer function estimation technique
can be used for simulationswhere accuracy ismore important
than speed.
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